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Nonlinear Response for Time-Dependent External
Fields: Shear Flow and Color Conductivity'

J. Petravic® and D. J. Evans®®

We present a generalization of the nonlinear response theory for autonomous
systems which can be applied to classical many-body systems in large time-
dependent external fields. Qur formalism represents the first practical applica-
tion of response theory to such problems, and provides a method of evaluating
averages of phase functions that is more efficient than direct computer simula-
tion. Our expressions for the nonlinear time-dependent response are tested
against nonequilibrium molecular dynamics computer simulation of two simple
nonautonomous systems. The relation of our results to known special cases
(time-dependent linear response and time-independent nonlinear response) is
discussed.
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1. INTRODUCTION

When the external field perturbing a classical N-particle system is suf-
ficiently weak, the linear response theory [ I, 2] yields the expressions for
the transport coefficients in terms of the equilibrium properties of the
system. This provides a complete treatment of response to any constant or
time-dependent external fields for which the linear approximation holds.
For constant fields, the general nonlinear response can be found using
either of the two equivalent methods, Kawasaki response formula [3] or
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the transient time-correlation function (TTCF) approach [4]. The deriva-
tions of both theories rely on the fact that the equations of motion of con-
stituent particles do not depend on time explicitly (i.e., the equations of
motion are autonomous).

There have been attempts to develop a formalism for treatment of
nonlinear response to time-dependent fields [5], which use the time-
ordered exponentials for the definition of propagators. However, due to
commutivity constraints, the resulting expressions were too complex to be
used in comparisons with laboratory or even computer experiments.

Recently [6, 7], we described an entirely new approach to the treat-
ment of nonlinear nonautonomous systems. Our approach is based on the
definition of an extended phase-space in which the system becomes
autonomous,

The algorithm corresponding to this extended phase-space TTCF for-

malism is tested using computer simulation of two very simple systems. The
first consists of two colored disks interacting with a color-sensitive, time-
dependent external field, and we compare the response of field-induced
changes in the hydrostatic pressure to that predicted by our theory. The
second system consists of two disks subjected to steady shear. The standard
nonequilibrium molecular dynamics algorithm for steady shear flow (Sllod)
employs Lees-Edwards [ 8] periodic boundary conditions. It is not widely
known that these boundary conditions make the system nonautonomous,
and the “steady-state” shear stress is, in fact, time periodic. The changes in
the hydrostatic pressure in the first example and the time dependence of the
shear stress in the second example are both entirely nonlinear effects and
provide an empbhatic validation of the theory.
Somewhat surprisingly, our extended TTCF approach enables the calcula-
tion of these time-dependent effects with greater computational efficiency
than direct observation. This improved efficiency is apparent even in the
presence of very strong applied fields.

2. THEORY

We consider a general isokinetic N-particle system subject to a time-
dependent external field which is introduced at r=0. The equations of
motion of such a system are

_D

§,=—+ C,(T') F (1)
m

p;=F,+D,(T") F.(1)—ap,
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where the Gaussian thermostat multiplier «, given by

F, [« P} D, p;
= (S n [T E) (2 [T ), @
constrains the peculiar kinetic energy K=Y, p?/(2m) to a constant of
motion. The state of the system can be represented by a point in the phase-
space I' spanned by (q;, p;; i=1,.., N). We assume that the external field
is periodic in time, so that F (¢ + T,)=F ().
For 1<0, the external field is zero and the system is assumed to be
at equilibrium, The time-independent equilibrium phase-space probability
distribution of the isokinetic system is

exp[ — fUT)] 6(K(T) — K,)
f dT exp[ —BUT)] 8(K(T) — K,)

fo(r): (3)

where U is the potential energy of the system, K, =dN/(28) is the kinetic
energy, f=1/(kgT), where T is the temperature, kg is the Boltzmann con-
stant, and d is the Cartesian dimensionality of the system.

After the time-dependent external field starts acting upon the system
(at 7>=0), the phase-space probability distribution changes from fy(T)
toward a periodic long time nonequilibrium distribution, f, = f (T, ¢) =
Sl T, t+T,).

Therefore, the explicit time dependence affects a nonautonomous
system in two ways. First, the system approaches the long-time distribution
through a sequence of transient states, which is analogous to the case of
autonomous systems. Second, the long-time distribution itseif is time-
dependent.

This complex picture [5] can be simplified by incorporating a new
variable,

p(t) = +wt 4)

which is directly proportional to time, into the equations of motion (1),

4, =2+C,T) Fp)

m
p;=F;+ D) Flp)—ap, (5)
Pp=w

The new variable is the generalization of the “phase angle” of the tri-
gonometric functions. The /inear time dependence of this additional phase-
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space coordinate is essential for the development of the extended TTCF
algorithm, because it enables one to reach exactly the prescribed values of
@ after a given number of time steps. The state of the system can now be
represented by a point in extended phase-space, I =(I', ¢)=(q,, p;» ¢;
i=1,.., N). Because of the periodicity of the external field F,, it is sufficient
to consider values of ¢ in the range ¢ € [0, wT,]. For systems governed by
Eq. (5), the equilibrium extended phase-space distribution f(I"") is uniform
in @, fo(I") dI" = (fo(I')/wT,) dT dg.

For systems where the long-time macroscopic averages are not sen-
sitively dependent on the initial phase I'" = (T, ¢}, the long-time distribu-
tion f (I'") will be time independent, but dependent on ¢. This is
analogous to the approach to a unique steady state in autonomous
systems. The only time dependence comes from the change of f(I'") to
1 (I'"y when the external field F,(¢) is applied. Clearly, this lack of sen-
sitivity to the initial phase will eventually break down if the external field
is sufficiently strong. We do not consider such systems here.

Let us consider a phase variable B(I') which is a function of T" and
which, by definition, does not explicitly depend on time or, therefore, on
the additional phase-space coordinate ¢. Although B(I") is solely a function
of I', we can see from the equations of motion, Eq. (5), that the phase I
that the system evolves to at time ¢, namely, I'(¢), is a function of the initial
extended phase, I'" =(I', ¢). Thus, it is more revealing to write, B(t)=
B(I'(t; T, ¢)). In order to know the value of a phase function at time ¢, in
addition to the elapsed time, we need to specify the initial phase vector T’
and the initial phase angle « of the external field.

The average over extended phase-space of B, taken at time ¢, is

CB(1)Y" = [ dT" (1", 1) BT) = [ 41" (", 0) BT (1; "))

= [dr' /(1) BT T, )

Nea
=jdrd¢fj—T)B(r(z; T, ¢)) (6)

in the Schrodinger and Heisenberg pictures, respectively. As the equi-
librium distribution f5(I"") is known and given by Eq. (3), it is simpler to
use the Heisenberg picture. Using the definition of the dissipative flux J

(91

Y. <C,-(r)~Fi—Di(r>-%>aﬁJ(r>
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and the adiabatic incompressibility of the phase-space condition [9]
(AIT"), one can show that since

d{B(1))" _

"= —B [ dT" BT(5: T, 9)) F.(9) JT) (")

integrating with respect to time yields
C(B(1))' ={B(0))" - B f(: ds{ B(I'(s; T'(0), 9(0))) F(¢(0)) J(I(0))>" (7)

Equation (7) describes the evolution of the extended phase-space average
of the phase variable after the external field is applied. The average over the
extended phase-space means an average over all possible initial combina-
tions of positions, momenta and the additional phase-space coordinate ¢.
If B were taken to be the dissipative flux, then {(J(f))>' =0, by symmetry.
The fact that the extended average of the dissipative flux vanishes
illustrates that the average taken in Eq. (7) is not what we are most inter-
ested in. We now consider averages taken over the standard phase-space I'
for a particular value of ¢ = ¢, at time .

The expression corresponding to the Heisenberg picture in Eq. (6) is

CB(I(t); (1) = @ p))> =< B(D(1)) 6(@(1) — 9 p))'

:jdr'fg(r') BT, 9 =gp—wt)) 3e(t) — ¢p)

Using the same procedure as above, we find that the averages taken over the
standard phase-space I' for a particular value of ¢ = ¢ at time ¢ are given by

CBUT(E p(1) = 9211 = (BT p(0) =9,p))> = B [ ds Filgpp— o)

x {B(F(s; p(s)=@p)) JT(0; p(0) = @p—ws)))
(8)

The average value ( B(I'(1); ¢(¢t)=¢p)> in Eq. (8) means the average
over all values of the phase I', at time ¢, for a particular chosen constant
value, @p, of the phase angle at time 7, @(2); @(t)=¢@p. If all possible
values of ¢, from the interval [0, wT,] are substituted into Eq. (8), the
dependence of { B(I'(1); ¢(t)=@py on ¢p at time ¢ can be found. It should
be pointed out that this dependence cannot be obtained by direct calcula-
tions from a set of trajectories starting from the single initial value of ¢(0).
Such a set could only give the value of (B(I'(#); ¢(t) = ¢@o+ wt) at time ¢,
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(BTt +01); @(t) =@o+ w(t+0dt)) at time ¢+ 0t, etc. It should also be
observed that, in the integrals on both sides of Eq. (8), ¢(s) is a constant
equal to ¢ ,. However, as the time s changes, trajectories which contribute
to the correlation function at some particular value of s change. For dif-
ferent times s they start at different initial values of ¢, = ¢ p— ws. There-
fore, in order to find the evolution of (B(I'(¢); ¢(t)=¢p)> for the chosen
value of ¢(7) =¢p, we need to know the behavior of trajectories with al/
possible initial ¢(0) at all previous times.

Equation (8) is the general expression for the nonlinear response to a
time-dependent external field. For time-independent fields, there is no ¢
dependence in the distribution function, and all extended phases that differ
only in the extended phase-space coordinate ¢ become identical, so that
Eq. (8) reduces to the TTCF formula for autonomous systems [1]. The
linear time-dependent response formula [1], applicable in the low-
amplitude and high-frequency hmit, is obtained from Eq. (8) if the equi-
librium correlation function is substituted for the transient correlation in
the integrand of Eq. (8).

3. TEST SYSTEM: COLOR CONDUCTIVITY

This formalism is illustrated by the example of nonequilibrium
molecular dynamics simulation of a system of two disks with periodic
boundary conditions, subject to a time-dependent color field [107].

The interaction F; between disks is characterized by the WCA
(Weeks—Chandler—Anderson) potential [11]. In this work the effective
diameter of the disks, a, the depth of the potential well of the correspond-
ing Lennard-Jones potential, ¢, and the particle mass m, are all set to
unity. This defines a set of reduced units. All results described in this work
are given in reduced (i.e., dimensionless) units.

The disks differ by color labels, ¢;=(—1)}, i=1, 2, which determine
the interaction of each disk with the external color field F(¢) acting in the
x direction. We assume a sinusoidal time dependence of the color field for
t>0, F(t)=Fysin(@q+wi).

The additional coordinate ¢ is defined from Eq. (4) so that the equations
of motion for ¢ >0 in extended phase space I'' =(q,, p,, @), i=1, 2, are

. P;
q;,=—
m
b= F,+ic, Fy sin g —ap, )
G=aw

with the thermostatting term given by Eq. (3).
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In this system, the dissipative flux is given by J=3,_, , ¢;X;, and the
response of the hydrostatic pressure, P,

1 1 N p2<+p2.
=—(P - RS (3 F. F.
P 2( xx+Pyy) 2V<,§1< m +x1Fxt+thyx>> (10)

to a sinusoidal color field was monitored as a function of the angle ¢ and
time ¢. The response was calculated from Eq. (8) with B replaced by P.

The simulations were done at the density p = N/V=0.396850 and at
the temperature 7=1.0, using the fourth-order Runge-Kutta method of
integration of the equations of motion [Eq. (9)] with a time step of
6t =0.002.

The simulations were carried out for 2 x 50,000 initial phases from the
isokinetic equilibrium ensemble, for each of the 100 initial values of ¢(0),
and for a time 0 <¢<S5. From each starting phase I' =(q;,, p,), an addi-
tional starting point was generated using the time-reversal mapping
MT(T)=(q;, —p;) in order to improve the statistics and to reduce the
systematic error. This additional starting point ensures that the average
initial current is identically zero.

The equilibrium correlation function under the time integral in Eq. (8),
{P(t) J {0)>, vanishes at all times, and therefore, in the linear approxima-
tion the pressure is just equal to its equilibrium value. However, for strong
fields the pressure oscillates with twice the frequency of the external field
(since it is even under MT). The pressure shift is a strictly nonlinear effect
and, therefore, provides a powerful test of our theory. Figure 1 shows the
results obtained by the direct simulation and the time-dependent TTCF
method. Since the effect is very small, the direct simulation data are very
noisy, and therefore, there is still some disagreement at early times. At late
times, the agreement between the two sets of calculations is excellent. This
agreement is all the more remarkable because of the complex shape of the
response curves and the fact that these responses are entirely nonlinear,
The chance of accidental agreement, particularly in Fig. 1b, must be negligible.

In Fig. 1b we see the response for ¢(¢) =0, =, and for ¢(¢) =n/2, 3n/2.
By symmetry the response in each of these pairs should be identical. The
disparity gives a reasonable estimate of the statistical uncertainty in the
TTCEF and the direct response curves. Although the direct and the extended
TTCF curves are computed from the same number of simulation timesteps
and both algorithms consume very nearly the same computer time, the
extended TTCF curves always have a smaller variance. This is somewhat
surprising given that the field amplitude is so large (TTCF methods will
always be more efficient than direct methods at sufficiently small fields.).
We believe that this improvement in efficiency is related to the fact that in
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Eq. (8) the response at a given time and specified phase-angle is computed
from an ensemble average of trajectory responses which span the initial
phase angle distribution. This cross phase averaging results in superior
efficiency.

4. TEST SYSTEM: STEADY SHEAR FLOW

The nonequilibrium steady states of the planar Couette-Taylor flow
have been successfully simulated using the SLLOD [9] algorithm with the
Lees—Edwards boundary conditions [8]. The SLLOD equations of motion
for the two-dimensional two-body system are

q;=p;/m+iyy;
pi:Fi(q’ dx)_i}'pyi_“pi (ll)
d.=y

where p; is the momentum of the /th particle, q; its position in the periodic
cell, and q=(q;; j=1, N). The parameter y is the shear rate (y =du, /0y,
where u is the streaming velocity), and « is the Gaussian thermostat which
ensures the conservation of the peculiar kinetic energy at all times. F, is the
interaction between the particle / and particle j within its minimum image
cell [97]. It is given by the WCA interaction potential [11].

The Lees—Edwards periodic boundary conditions define the motion of
the neighboring periodic cells to be consistent with the linear streaming
velocity profile in the equations of motion [ Eq. (11)]. The motion of the
cell images is such that their individual origins move with an x-velocity
proportional to the y coordinate of the particular cell origin. If L is the
length of a side of the square periodic cell, the relative displacement d, L
of the origin of its neighbor on top will depend on time as

d.()t) =mod(d(0) + 7. 1) (12)

This causes the symmetry of the lattice to change periodically in time with
the period of 1/y.

Fig. 1. The direct simulation and TTCF results for the pressure in the periodic color field.
Both the direct simulation and the TTCF results show that the pressure oscillates with twice
the frequency of the color field. The amplitude of the pressure oscillations changes in time
from zero to the final value. (a) Pressure as a function of ¢ at different times. (b) Pressure
at a constant value of ¢. {c) Pressure as a function of time for ¢(0)=0.
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Note that d,(z) is the strain of the lattice defined by Lees—Edwards
periodic boundary conditions. Since the interaction of particles is deter-
mined by the minimum image convention, the periodic moving boundary
conditions [ Eq. (12)] affect the interaction between particles periodically
in time. Therefore, in the SLLOD equations [ Eq. (11)], it is more proper
to write F,(t) instead of F; because the particle interactions explicitly
depend on the instantaneous symmetry of the lattice and, therefore, on
time.

We are usually interested in the phase-space average of some phase
function B some time after application of the external shearing field. It can
be expected that even in the long time limit # — oo, the steady state of this
two disk system will not exist, but that {B) will be time-periodic because
of the time dependence implicit in the boundary conditions. The
generalized TTCF theory derived in Section 2 can be modified to correctly
describe this kind of time dependence, if the additional extended phase-
space coordinate ¢ is defined to be d, [7]. We have only to keep in mind
that in this case the d, dependence of the equations of motion [Eq. (11)]
is present even in equilibrium when y = 0, because we can consider station-
ary periodic lattices of different symmetries, characterized by different
constant values of d,. The equilibrium phase-space distribution function
Jo(I') will generally depend on d,; therefore, it is more precise to write
ST dy) = fo(T).

While the oscillations in ( B) present in small systems subjected to
constant shear are just an artefact of the boundary conditions, the evolu-
tion of the extended phase-space average of B(I''), as in Eq. (7), can be
related to the values of this phase function in real systems. The extended
phase-space average at long times is the same as the average over one
period of oscillation.

The response of the shear stress,

—1 xi Fyi 1
P M =—x Y <M+— Y (@ di) + yy Fop(a dy))
V. 3,\ m 2,59,
J#i

has been monitored as a function of the shift of neighbor cells d, and time ¢.
It has been calculated from the expression corresponding to Eq. (8),

(P8 (1) = D))
=PI ()= D)y~ [ ds

X (Po(I'(5:d(s)=D)) P (T'(0;d(0)=D—ys)))>  (13)
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The simulation results for a two-disk system at the reduced strain rate
y* =ya(m/e)/* =1 are shown in Fig. 2. The simulations were done at the
reduced density p*=po?=0.396850 and at the reduced temperature
T*=kyT/e=1.0, using the fourth-order Runge-Kutta method of integra-
tion of the equations of motion [Eq. (1)] with a time step of dr =0.005.
The interval [0, 1] of possible values of ¢, has been divided into 50 subin-
tervals of width dd, = 0.02, and the time step of time integration in Eq. (13)
is therefore ds=0.02. From each starting phase I'"=(q,, p;; d,) of the
isokinetic equilibrium ensemble, three additional starting points were gen-
erated using the time-reversal mapping M7, the y-reflection mapping MY,
and the Kawasaki mapping M¥ [9],

MY(I") =(q,, —p: —d,)
MY(F’) ('\" _y* s p.\:’ _pys p:s dx)
MYy =(x, ~3, 5 —pos Py =Pz —dy)

Il

in order to improve the statistics and to reduce systematic error. These
additional starting phase points ensure that the average initial shear stress
is identically zero. Since the objective of this simulation has been to test
whether the direct calculations and our theory [Eq. (13)] coincide, we
used a large number of initial trajectories, 4 x 20,000, for each of the 50
values of d,(0).

When the shear-stress correlation function in Eq. (13) is integrated
over the same time 7 for many different lattice configurations d, = D, the
dependence of (P, > on d, at time ¢ is obtained. This dependence first
changes its form, and after a long time (in this case the time of 5/y was
found to be sufficient), when the system reaches its steady state in the
extended phase-space, the form of the d, dependence remains constant in
time. The evolution of the shear-stress response as a function of d,,
evaluated by direct simulation and using the generalized TTCF formula
[Eq. (13}], is shown in Fig. 2a. After the system has been subjected to
shear for a short time (+=0.5 in Fig. 2a), the variations of { P_ > with the
change of d, are small. Later, the amplitude of oscillations increases until
a final state pattern is established.

Figure 2b shows the approach to the steady state of
(P I'(t;d(t)=D))) for four values of D. In Fig. 2c the phase-space
average of P,, has been evaluated from the trajectories starting from the
same equilibrium lattice, with ¢,(0) =0, and was followed over five periods
of the lattice symmetry change. In all these results, there is an excellent
correspondence between direct and TTCF calculations, but there is less
noise present in the TTCF results, Noise reduction is a feature typical of
all TTCF methods [6, 77.
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5. CONCLUSION

The generalization of the TTCF formalism to nonautonomous systems
has been developed by extending the phase-space to include an additional
coordinate, ¢, which is linearly dependent on time and which is incor-
porated into the equations of motion. The /inear time dependence of this
additional phase-space coordinate is essential for the development of the
extended TTCF algorithm, because it enables one to reach exactly the
prescribed values of ¢ after a given number of time steps. The equations of
motion in the extended phase-space become autonomous, and the response
is governed by the time evolution of the probability distribution f'(I'") of
the extended phase-space as a whole.

The simulation results for the test case of the response of the color
current to a sinusoidal color field for a periodic two-disk system shows
excellent agreement between the extended TTCF approach and the direct
simulation. The comparison of results for the intrinsically nonlinear field-
induced pressure shift is even more impressive. Even at comparatively large
fields, the extended TTCF approach yields results with superior computa-
tional efficiency to direct simulation.

We have pointed out that for “steady” shear flow under Lees—Edwards
shearing periodic boundary conditions, the equations of motion are in fact
nonautonomous. The effects of these nonautonomous terms decrease
extremely rapidly with increasing system size, N. We expect, however, that
for systems with long-range potentials, this will not be so. For finite N,
in the nonlinear regime conventional (autonomous) response theory for
steady shear flow is incorrect. Our generalization of time-dependent non-
linear response theory successfully describes steady Lees-Edwards shear
flow. We have tested this theory against nonequilibrium computer simula-
tion and found impressive agreement between theory and experiment. This
agreement is all the more impressive because of the irregular and complex
shapes of the response curves.

A bonus from our theory is that when it is used to compute the
response, one obtains estimates of the response which are more accurate

Fig. 2. (a) The change of the d, dependence of the shear stress of a two-disk system in time,
evaluated using direct simulation and the generalized TTCF method. (b) The shear stress of
a two-disk system with y =1 has different steady-state values for different lattice configura-
tions d,. The approach to the steady state is calculated for four different configurations using
direct simulation and the generalized TTCF method. The two methods show excellent corre-
spondence of results, but there is less noise present in the TTCF results. (¢) Direct simulation
and TTCF results for the time evolution of the shear stress of a two-disk system with y =1,
starting from the lattice configuration characterized by d,{0) =0. The two sets of results coin-
cide in these graphs.
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than those obtained by directly averaging the observed response. This
enhanced efficiency is thought to result from the nondeterministic sampling
of the phase-space coordinate which depends linearly on time. This sampling
results in an efficient exploration of the extended phase-space.

One disadvantage of this theory is that it can be applied only to peri-
odic fields. Another disadvantage is that the results are relevant only to
periodic fields of the same frequency and waveform. For example, we can-
not use the results of the present simulations for sinusoidal fields to predict
the response of the same system to strong square-wave fields or, indeed, to
sinusoidal fields of different frequencies or amplitudes.
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